An Interplay of Ridgelet and Linear Canonical Transforms

نویسندگان

چکیده

The present study is the first of its kind, aiming to explore interface between ridgelet and linear canonical transforms. To begin with, we formulate a family waveforms by suitably chirping one-dimensional wavelet along specific direction. construction novel demonstrated via suitable example supported vivid graphics. Subsequently, introduce notion transform, which not only embodies classical transform but also yields another new variant based on fractional Fourier transform. Besides studying all fundamental properties, an illustrative implementation bivariate function.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast linear canonical transforms.

The linear canonical transform provides a mathematical model of paraxial propagation though quadratic phase systems. We review the literature on numerical approximation of this transform, including discretization, sampling, and fast algorithms, and identify key results. We then propose a frequency-division fast linear canonical transform algorithm comparable to the Sande-Tukey fast Fourier tran...

متن کامل

Multiscaled Wavelet Transforms, Ridgelet Transforms, and Radon Transforms on the Space of Matrices

Let Mn,m be the space of real n × m matrices which can be identified with the Euclidean space R. We introduce continuous wavelet transforms on Mn,m with a multivalued scaling parameter represented by a positive definite symmetric matrix. These transforms agree with the polar decomposition on Mn,m and coincide with classical ones in the rank-one case m = 1. We prove an analog of Calderón’s repro...

متن کامل

Optical implementations of two-dimensional fractional fourier transforms and linear canonical transforms with arbitrary parameters.

We provide a general treatment of optical two-dimensional fractional Fourier transforming systems. We not only allow the fractional Fourier transform orders to be specified independently for the two dimensions but also allow the input and output scale parameters and the residual spherical phase factors to be controlled. We further discuss systems that do not allow all these parameters to be con...

متن کامل

Radon and Ridgelet transforms applied to motion compensated images

Images are typically described via orthogonal, non-redundant transforms like wavelet or discrete cosine transform. The good performances of wavelets in one-dimensional domain are lost when they are applied to images using 2D separable basis since they are not able to efficiently code one-dimensional singularities. The Ridgelet transform achieves very compact representation of linear singulariti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10121986